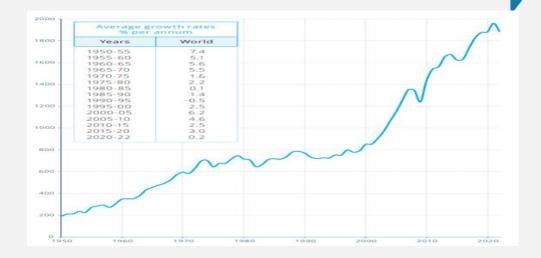
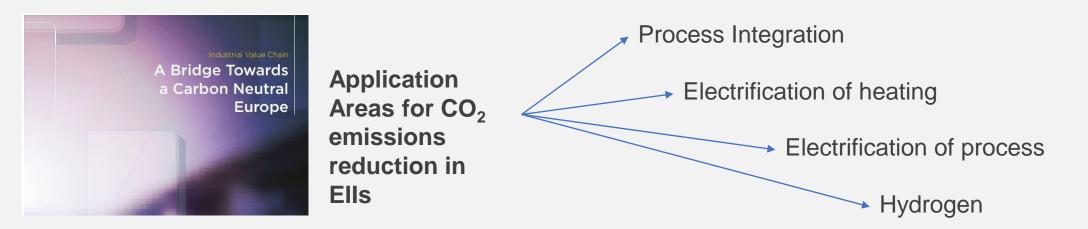
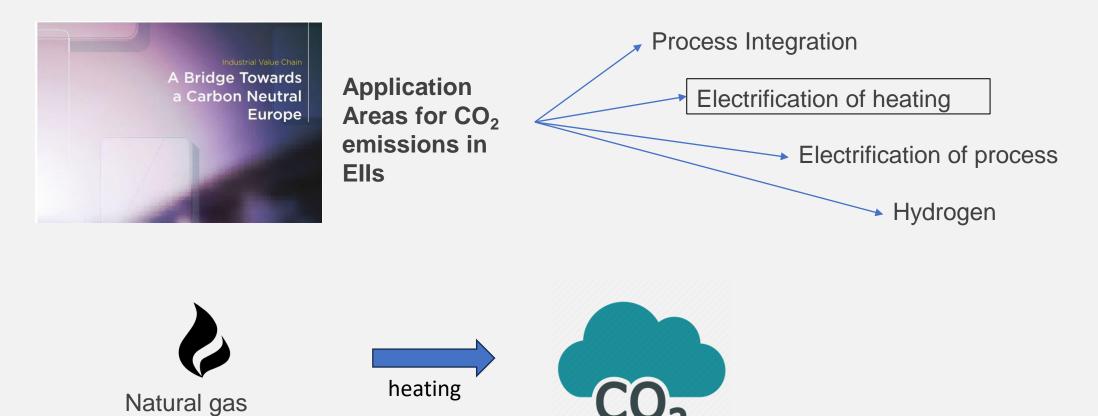
Electrification of steel industry

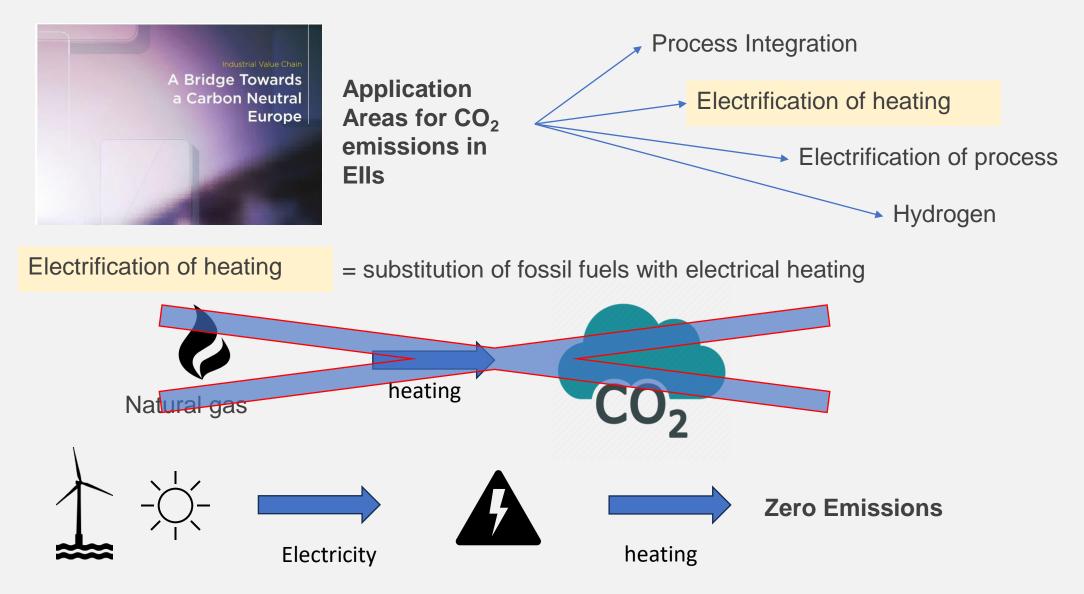
Edoardo D'Amanzo


22nd September - Rome


RINE

Introduction


Steel is responsible for 5% of entire CO₂ emissions in Europe (*IEA. (2020). Iron and Steel Technology Roadmap*), and considering the production trend, **decarbonization** of steel sector is crucial for achieving carbon neutrality in 2050.

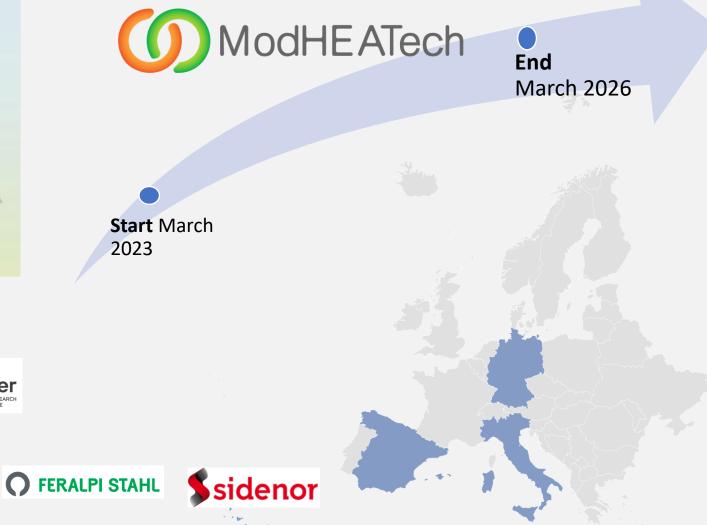

World Steel Production by year in Millions of tons [source World Steel Association]

Introduction

Introduction

ModHEATech project

ModHEATech: MOdular HEAting TECHnology through renewable resources for steel production



RIR

6 Partners

4 industrials

2 Research Centres

ModHEATech general

The project **ModHEAtech** proposes to **decarbonize the ROLLING MILL PLANT**, <u>keeping high quality</u> <u>standard without negative impact on productivity</u> and economic needs.

- Induction Heating for Long Product at industrial scale in combination with gas burning
- How
- Study of an Alternative Heating Technology for Long Product at Pilot Scale
- Impact on Material Selection and Maintenance Strategy for application of Induction Furnace and Hydrogen: <u>Feasibility Study</u>

Route 1 –

- □ Induction Furnace
- Long Product
- □ Industrial Scale

Location: ORI MARTIN plant

Design

Selection of induction technology (ORI MARTIN)
Study of metallurgical impact of induction (RINA CSM)
Process Integration with green energy production (Rina CSM)

Installation and Trials

Induction system on Reheating Furnace partialization of heating (*ORI MARTIN*)
Industrial Tests (*ORI MARTIN*)
KPIs Monitoring (microstructure, productivity, etc) (*Rina CSM*)

Techno-Economic Assessment

Design

- Selection of induction technology (<u>ORI</u> <u>MARTIN</u>)
- Study of metallurgical impact of induction (RINA CSM)
- Process Integration with green energy production (Rina CSM)

Installation and Trials

- Induction system on Reheating Furnace partialization of heating
- Industrial Tests
- KPIs Monitoring (microstructure, productivity, etc)

Techno-Economic Assessment

Route 2 –

- Alternative Heating
- Long Product
- Pilot Scale

•Se

Location: Feralpi plant

Design

Selection of alternative heating technology (Feralpi)
Setting of DoE (steelgrades, shapes, heating profile, clamps and motion, etc) (*Rina CSM*)

Pilot Trials

Impact on different charge input, so different steel grades and different shapes (*Feralpi*)
Kpls monitoring : microstructures, steel quality, homogeneity of heating, consumptions (*RINA CSM*)

Techno-Economic Assessment

Design

- Selection of induction technology (<u>ORI</u> <u>MARTIN</u>)
- Study of metallurgical impact of induction (RINA CSM)
- Process Integration with green energy production (Rina CSM)

Installation and Trials

- Induction system on Reheating Furnace partialization of heating
- Industrial Tests
- KPIs Monitoring (microstructure productivity, etc)

Techno-Economic Assessment

Pilot Trial

Impact on different charge input, so different steel grades and different shapes
Kpls monitoring : microstructures, steel quality, homogeneity of heating, consumptions

Techno-Economic Assessment

Desig

 Selection of alternative heating technology (Feralpi)
 Setting of DoE (steelgrades, shapes, heating of DoE (steelgrades, shapes, heating steelers)

Route 3 –

 Feasibility Study on Induction Furnace & Hydrogen
 Long Product Location: SIDENOR plant

Preliminary LCA

For definition of the current state of rolling mills (Tekniker, SIDENOR)

Feasibility Study (Tekniker):

- H2 Burner
- Induction Heating
- Maintenance (FMCA)
- Materials
- Green Energy Production

Final LCA. LCC and S-LCA analysis (Tekniker, SIDENOR)

Route 1 –

Induction Furnace

Long Product

□ Industrial Scale

Location: ORI MARTIN plant

Design

Selection of induction technology (<u>ORI</u> <u>MARTIN</u>)
Study of metallurgical impact of induction (*RINA CSM*)
Process Integration with green energy production (Rina CSM)

Installation and Trials

Induction system on Reheating Furnace – partialization of heating (ORI MARTIN)
Industrial Tests (ORI MARTIN)
KPIs Monitoring (microstructure, productivity, etc) (Rina CSM)

Techno-Economic Assessment

Route 2 –

Alternative Heating

□ Long Product

Pilot Scale

Location: Feralpi plant

Design

Selection of alternative heating technology (Feralpi)
Setting of DoE (steelgrades, shapes, heating profile, clamps and motion, etc) (*Rina CSM*)

Pilot Trials

Impact on different charge input, so different steel grades and different shapes (*Feralpi*)
Kpls monitoring : microstructures, steel quality, homogeneity of heating, consumptions (*RINA CSM*)

Techno-Economic Asses<u>sment</u>

Route 3 –

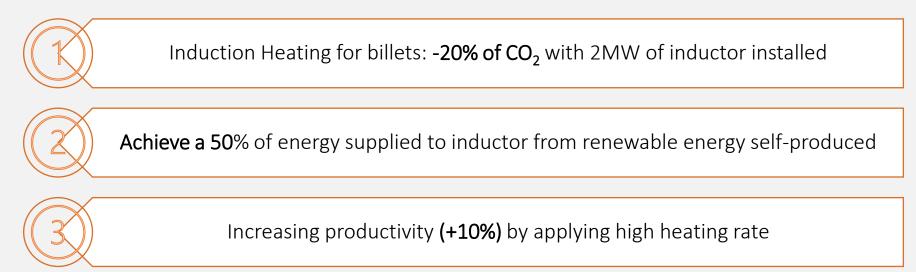
 Feasibility Study on Induction Furnace & Hydrogen

Long Product

Location: SIDENOR plant

Preliminary LCA

For definition of the current state of rolling mills (Tekniker, SIDENOR)


Feasibility Study (Tekniker):

- H2 Burner
- Induction Heating
- Maintenance (FMCA)
- Materials
- Green Energy Production

Final LCA. LCC and S-LCA analysis (Tekniker, SIDENOR)

Expected Outcomes at the end of the project

Proving the feasibility of **alternative heating technology** in billets heating for **special steel heating**

Roadmap on how decarbonize rolling mills plant, until a sustainability of 100% sector. Integration of Induction Heating and Hydrogen Burners.

Less dependence from fossil fuels, with protection from harmful market event

Thanks for the Attention

For any questions edoardo.damanzo@rina.org

